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Introduction
The utilization of an evolutionary algorithm (EA) for navigation through a complex 
environment essentially involves determining the most efficient route to reach a 
specified goal. This process hinges on formulating an objective function (also 
known as a fitness function) that is designed to be either minimized or 
maximized. 


Earlier research has highlighted a significant issue encountered in practical 
applications. Although the goal of a task might be clearly established and well 
known, the definition of the objective function could be misleading. This issue is 
exemplified by the challenges faced when constructing a control model for an 
autonomous agent tasked with navigating a two-dimensional maze.


Here, the primary objective of the control model is to guide the robot so that it 
navigates the maze from the starting point to the exit within a predetermined 
number of moves.



Introduction
One might instinctively create a goal-driven objective 
function based on the robot's proximity to the maze 
exit. However, in a complex maze, the solver agent 
could increasingly struggle to make appropriate 
directional choices solely based on exit proximity.


The figure at the right demonstrates that a minimal 
distance to the exit doesn't necessarily indicate a 
clear path to it. The fitness function may present 
local optima within the maze's dead ends, marked 
by steep fitness score gradients.


In this case, we have a deceptive landscape of 
fitness score values, which a goal-oriented objective 
function can not solve.



Introduction
It can be asserted that while the control model may identify the optimal solution, it's not 
always discoverable through evolution with a straightforward goal-oriented objective function. 
Furthermore, the conventional wisdom in defining the fitness function is questionable, as it 
conflates the end goal (exit of the maze) with the design of the objective function (proximity to 
the exit).


To address this issue, the SAFE (Solution And Fitness Evolution) method was suggested, 
which decouples the control model's optimization from that of the objective function. 
Essentially, the solver agent's goal to find the maze exit doesn't imply that the objective 
function must be based on the distance to the exit. The proposed solution involves the co-
evolution of two populations: the control models and the candidates for objective functions.


This work introduces an innovative application of the NEAT algorithm for evolving the solver 
agents (control models) and combines the NEAT algorithm with the Novelty Search (NS) 
method for evolving the objective function candidates. Additionally, it introduces a modified 
version of the NS method designed to narrow the search space for solutions, thereby 
enhancing overall efficiency.




Key features of coevolution
Coevolution can be described as a synergistic process where multiple lineages of distinct organisms evolve 
together in a way that is advantageous to each. Concurrently, the evolutionary trajectory of one species is 
inextricably linked to the presence of others. Throughout their evolutionary journey, coevolving species 
engage in interactions that influence and define their respective evolutionary tactics.


Coevolution encompasses three primary forms:


- mutualism, where multiple species live in harmony, each gaining advantages from the others;


- competitive coevolution:


• predation, where one organism preys on and utilizes the resources of another;


• parasitism, where one organism exploits another's resources without causing its demise;


- commensalism, a relationship in which one species benefits while the other species is neither helped nor 
harmed.


The final category of coevolutionary tactics has attracted interest among scholars for its potential in 
developing an effective approach to train autonomous agents.




Key features of the SAFE algorithm
The SAFE method, as suggested by its designation, revolves around the simultaneous 
evolution of both the solution and the objective function, which steers the solution 
search optimization. 


It's predicated on the commensalistic coevolution strategy involving two distinct groups:


- a population of potential solutions that undergoes evolution to address the immediate 
problem;


- a population of objective function candidates that evolves with the purpose of refining 
the evolutionary path of the solution population.


This work advocates for the application of the NEAT algorithm to orchestrate the 
evolution of the population of potential solutions, combined with the NS method to 
enhance the evolutionary process within the population of objective function candidates.



Fitness function of the solver agent
During every stage of the evolutionary process, each 
maze solver agent undergoes assessment by all the 
potential objective functions from a separate 
commensalistic group. The highest fitness score 
achieved from these evaluations for each solver agent by 
any of the objective function candidates is then 
considered as the fitness score of the solution they 
represent.


The maze solver's fitness function integrates two 
measures: the distance to the maze exit (an estimation of 
proximity to the goal) and the uniqueness of the solver's 
end location (an estimation of novelty). These evaluations 
are arithmetically combined using a pair of coefficients 
derived from the output data of a specific member within 
the population of objective function candidates.

Where  – is the fitness score 
obtained by evaluating the candidate 
solution  wrt objective function . A 
pair of coefficients [ ] is the output 
of a specific candidate for the 
objective function. This pair 
determines to what extent the distance 
to the maze exit ( ) and behavioral 
novelty ( ) of the solution affects the 
ultimate fitness score of the maze 
solver at the end of the trajectory.
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Fitness function of the solver agent
The distance to the maze exit ( ) is defined as the Euclidean distance between the final 
coordinates of the maze solver on its trajectory and the coordinates of the maze exit.
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Where  – final coordinates of the maze solver and  – coordinates of the maze exit.a b

The novelty score  of each maze-solving agent is determined by its final position in the maze (point ). It is calculated as 
the average distance from this point to the k-nearest neighboring points, which are the final positions of other maze solvers.
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Where  – is the i-th nearest neighbor and  – distance between  and .μi dist(x, μi) x μi

The distance between two points is a novelty metric that measures how different the current solution ( ) is from another 
( ) produced by different maze solver. The novelty score is calculated as the Euclidean distance between two points:

x
μi

Where  and  – values at index j of coordinate vectors with coordinates of pints  and , 
respectively.
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Fitness function of the candidates for objective functions

The SAFE method operates on the principle of commensalistic coevolution, 
which means that one of the coevolving populations is neither benefited nor 
harmed during the evolution. In our experiment, the commensalistic population 
is a set of candidates for objective functions. It's necessary to establish a 
fitness function for this population that is independent of the performance of the 
maze-solving agents (control models).


An appropriate choice in this context is an objective function that employs a 
novelty metric for determining fitness scores ( ). The formula for calculating 
the novelty score of each objective function candidate is the same as for the 
maze-solving agents (3). The only difference is that in the case of objective 
function candidates, we calculate the novelty score using vectors containing the 
output values [ ] (1) from each individual of the population. Subsequently, this 
calculated novelty score is utilized as the fitness score for the individual.
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Experiment results
A successful solver agent was found after 211 generations of evolution and has the following 
configuration - 22 nodes connected by 47 links.


During the coevolutionary process, the optimal coefficients for the objective function [a, b] 
were identified. These coefficients, a = -0.53283 and b = 0.95889, were used to train an 
effective solver agent. Thus, formula (1) can be rewritten by substituting the found 
coefficients as follows:


According to formula (5), it can be concluded that found objective function emphasizes 
training on the search for the most innovative solutions ( ), paying much less attention to 
the value of the distance to the maze exit ( ). This confirms our thesis given at the beginning 
of this work that in a complex environment, a successful objective function is not the same as 
the distance to the goal (maze exit).


In the figure, we also see that most evolutionary losers are stuck in the local optima. At the 
same time, the successful solver agent showed the greatest innovativeness, giving preference 
to the research of new areas, as opposed to the use of already known ones (exploration vs 
exploitation).
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Conclusions
This work shows how the use of the method of coevolution of two populations - a 
population of decision-making agents and a population of candidates for the objective 
function can be used to solve the problem of navigation in a complex maze. It has been 
experimentally proven that this method is more effective compared to the methods 
considered in previous works.


In contrast to earlier works, a novel method for executing the SAFE (Solution and Fitness 
Coevolution) method was introduced. This method involves utilizing the NEAT algorithm to 
manage the evolution process of two populations engaged in a commensalistic coevolution 
relationship. Also, the Novelty Search optimization method was used to guide the search 
within a deceptive landscape of possible solutions.


Finally, a software library was developed to facilitate a coevolution experiment using the 
GO programming language, as well as visualization tools that allow visual evaluation of 
coevolution outcomes as the input variables are modified.


https://github.com/yaricom/goNEAT_NS
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