
14-15 May 2024

Application of the coevolution strategy
to solve the problem of autonomous
navigation through the maze
Iaroslav Omelianenko, Anatoliy Doroshenko, Yevheniy Rodin

Institute of Software Systems,

National Academy of Science of Ukraine

UkrPROG-2024

Introduction
The utilization of an evolutionary algorithm (EA) for navigation through a complex
environment essentially involves determining the most efficient route to reach a
specified goal. This process hinges on formulating an objective function (also
known as a fitness function) that is designed to be either minimized or
maximized.

Earlier research has highlighted a significant issue encountered in practical
applications. Although the goal of a task might be clearly established and well
known, the definition of the objective function could be misleading. This issue is
exemplified by the challenges faced when constructing a control model for an
autonomous agent tasked with navigating a two-dimensional maze.

Here, the primary objective of the control model is to guide the robot so that it
navigates the maze from the starting point to the exit within a predetermined
number of moves.

Introduction
One might instinctively create a goal-driven objective
function based on the robot's proximity to the maze
exit. However, in a complex maze, the solver agent
could increasingly struggle to make appropriate
directional choices solely based on exit proximity.

The figure at the right demonstrates that a minimal
distance to the exit doesn't necessarily indicate a
clear path to it. The fitness function may present
local optima within the maze's dead ends, marked
by steep fitness score gradients.

In this case, we have a deceptive landscape of
fitness score values, which a goal-oriented objective
function can not solve.

Introduction
It can be asserted that while the control model may identify the optimal solution, it's not
always discoverable through evolution with a straightforward goal-oriented objective function.
Furthermore, the conventional wisdom in defining the fitness function is questionable, as it
conflates the end goal (exit of the maze) with the design of the objective function (proximity to
the exit).

To address this issue, the SAFE (Solution And Fitness Evolution) method was suggested,
which decouples the control model's optimization from that of the objective function.
Essentially, the solver agent's goal to find the maze exit doesn't imply that the objective
function must be based on the distance to the exit. The proposed solution involves the co-
evolution of two populations: the control models and the candidates for objective functions.

This work introduces an innovative application of the NEAT algorithm for evolving the solver
agents (control models) and combines the NEAT algorithm with the Novelty Search (NS)
method for evolving the objective function candidates. Additionally, it introduces a modified
version of the NS method designed to narrow the search space for solutions, thereby
enhancing overall efficiency.

Key features of coevolution
Coevolution can be described as a synergistic process where multiple lineages of distinct organisms evolve
together in a way that is advantageous to each. Concurrently, the evolutionary trajectory of one species is
inextricably linked to the presence of others. Throughout their evolutionary journey, coevolving species
engage in interactions that influence and define their respective evolutionary tactics.

Coevolution encompasses three primary forms:

- mutualism, where multiple species live in harmony, each gaining advantages from the others;

- competitive coevolution:

• predation, where one organism preys on and utilizes the resources of another;

• parasitism, where one organism exploits another's resources without causing its demise;

- commensalism, a relationship in which one species benefits while the other species is neither helped nor
harmed.

The final category of coevolutionary tactics has attracted interest among scholars for its potential in
developing an effective approach to train autonomous agents.

Key features of the SAFE algorithm
The SAFE method, as suggested by its designation, revolves around the simultaneous
evolution of both the solution and the objective function, which steers the solution
search optimization.

It's predicated on the commensalistic coevolution strategy involving two distinct groups:

- a population of potential solutions that undergoes evolution to address the immediate
problem;

- a population of objective function candidates that evolves with the purpose of refining
the evolutionary path of the solution population.

This work advocates for the application of the NEAT algorithm to orchestrate the
evolution of the population of potential solutions, combined with the NS method to
enhance the evolutionary process within the population of objective function candidates.

Fitness function of the solver agent
During every stage of the evolutionary process, each
maze solver agent undergoes assessment by all the
potential objective functions from a separate
commensalistic group. The highest fitness score
achieved from these evaluations for each solver agent by
any of the objective function candidates is then
considered as the fitness score of the solution they
represent.

The maze solver's fitness function integrates two
measures: the distance to the maze exit (an estimation of
proximity to the goal) and the uniqueness of the solver's
end location (an estimation of novelty). These evaluations
are arithmetically combined using a pair of coefficients
derived from the output data of a specific member within
the population of objective function candidates.

Where – is the fitness score
obtained by evaluating the candidate
solution wrt objective function . A
pair of coefficients [] is the output
of a specific candidate for the
objective function. This pair
determines to what extent the distance
to the maze exit () and behavioral
novelty () of the solution affects the
ultimate fitness score of the maze
solver at the end of the trajectory.

Oi(Si)

Si Oi
a, b

Di
NSi

Fitness function of the solver agent
The distance to the maze exit () is defined as the Euclidean distance between the final
coordinates of the maze solver on its trajectory and the coordinates of the maze exit.

Di

Where – final coordinates of the maze solver and – coordinates of the maze exit.a b

The novelty score of each maze-solving agent is determined by its final position in the maze (point). It is calculated as
the average distance from this point to the k-nearest neighboring points, which are the final positions of other maze solvers.

NSi x

Where – is the i-th nearest neighbor and – distance between and .μi dist(x, μi) x μi

The distance between two points is a novelty metric that measures how different the current solution () is from another
() produced by different maze solver. The novelty score is calculated as the Euclidean distance between two points:

x
μi

Where and – values at index j of coordinate vectors with coordinates of pints and ,
respectively.

μj xj μ x

Fitness function of the candidates for objective functions

The SAFE method operates on the principle of commensalistic coevolution,
which means that one of the coevolving populations is neither benefited nor
harmed during the evolution. In our experiment, the commensalistic population
is a set of candidates for objective functions. It's necessary to establish a
fitness function for this population that is independent of the performance of the
maze-solving agents (control models).

An appropriate choice in this context is an objective function that employs a
novelty metric for determining fitness scores (). The formula for calculating
the novelty score of each objective function candidate is the same as for the
maze-solving agents (3). The only difference is that in the case of objective
function candidates, we calculate the novelty score using vectors containing the
output values [] (1) from each individual of the population. Subsequently, this
calculated novelty score is utilized as the fitness score for the individual.

NSi

a, b

Experiment results
A successful solver agent was found after 211 generations of evolution and has the following
configuration - 22 nodes connected by 47 links.

During the coevolutionary process, the optimal coefficients for the objective function [a, b]
were identified. These coefficients, a = -0.53283 and b = 0.95889, were used to train an
effective solver agent. Thus, formula (1) can be rewritten by substituting the found
coefficients as follows:

According to formula (5), it can be concluded that found objective function emphasizes
training on the search for the most innovative solutions (), paying much less attention to
the value of the distance to the maze exit (). This confirms our thesis given at the beginning
of this work that in a complex environment, a successful objective function is not the same as
the distance to the goal (maze exit).

In the figure, we also see that most evolutionary losers are stuck in the local optima. At the
same time, the successful solver agent showed the greatest innovativeness, giving preference
to the research of new areas, as opposed to the use of already known ones (exploration vs
exploitation).

NSi
Di

Conclusions
This work shows how the use of the method of coevolution of two populations - a
population of decision-making agents and a population of candidates for the objective
function can be used to solve the problem of navigation in a complex maze. It has been
experimentally proven that this method is more effective compared to the methods
considered in previous works.

In contrast to earlier works, a novel method for executing the SAFE (Solution and Fitness
Coevolution) method was introduced. This method involves utilizing the NEAT algorithm to
manage the evolution process of two populations engaged in a commensalistic coevolution
relationship. Also, the Novelty Search optimization method was used to guide the search
within a deceptive landscape of possible solutions.

Finally, a software library was developed to facilitate a coevolution experiment using the
GO programming language, as well as visualization tools that allow visual evaluation of
coevolution outcomes as the input variables are modified.

https://github.com/yaricom/goNEAT_NS

Thank you!

