
19-22 February, 2024

Design of cluster-computing 
architecture to improve training speed 
of the Neuroevolution algorithm 
Iaroslav Omelianenko 
Institute of Software Systems, National Academy of Science of Ukraine 

9th International Congress on Information and Communication Technology, London, UK



Introduction
Genetic algorithms are a promising field of machine learning, particularly 
suitable for tasks related to optimization and control, reinforcement learning, 
artificial life simulation, coevolution of swarm agents, and so on. 


One of the most popular and powerful among them is a Neuroevolution of 
Augmenting Topologies (NEAT). NEAT algorithm and its extensions allow us to 
apply creative forces of natural evolution to design compact and energy efficient 
topologies of the Artificial Neural Networks (ANN). Controllers based on such 
ANNs can then be used for inference in environments with very limited 
resources, such as: robots, UAVs, networking edge devices, IoT devices, etc.


In this presentation, I’ll briefly describe the fundamentals of the NEAT algorithm. 
After that, the proposed architecture design of cluster-computing using the Ray 
framework will be presented.



NEAT Fundamentals
The most important feature of the NEAT algorithm, that defines its potential, is an 
ability to evolve the topology of Artificial Neural Networks during the learning process. 
The importance of gradual augmentation of network topology became obvious if we 
consider how it is implemented by NEAT. When exploring search space of solution, 
NEAT algorithm starts with simplest basic network topology that comprises only input 
and output nodes of the solver ANN. After that, with each epoch of evolution, the 
topology of solvers become more complex and the most complex multidimensional 
topologies are evaluated only at the final stages of evolutionary process. Furthermore, 
the most suitable topological structures found during evolution are preserved by NEAT 
algorithm through generations due to its inherent features.


Such approach of gradual complexification of solver’s topology considerably reduces 
the solution search space during the training. Wide solution’s search space is a huge 
drawback of other evolutionary algorithms which effectively addressed by NEAT due 
to its key design features, which we consider next.



NEAT Key Features
• Topology augmentation through gradual complexification. Learning process 

starts with basic, simple topology and gradually increases its complexity based on 
results of analysis of solution search space. At the same time, NEAT has ability to 
preserve minimal found topology that is able to generate ultimate solution.


• Speciation. It separates population into evolutionary niches using genetic 
distance between organisms (similarity of genomes). Its main goal is to reduce 
negative adaptation pressure caused by increased complexity of novel organism 
when new node or connection added to the genome of the offspring.


• Mutation. It plays an important role in keeping genetic diversity of the population 
during evolution and prevents objective function from stalling at local minima 
when the chromosomes of organisms in the population become too similar. 
Mutation operator changes one or more genes in chromosomes according to the 
mutation probability defined by experimenter.



NEAT Key Features
• Innovation numbers. It is the most prominent feature of the NEAT algorithm 

that allows to solve issue with overlapping parts of genomes of ANN solvers. 
The overlapping genome parts produce similar ANN topologies that estimate 
the same function, but were embedded in different genome structures during 
reproductive crossover. With innovation numbers, we can easily differentiate 
them without complex topological analysis.


• Crossover (recombination of genomes). Allows for two or more champion 
organisms within specific population niche to mate and produce offspring that 
inherit important characteristics of both parents. It is during this process that 
the mentioned above innovation numbers allow us to identify overlapping 
(matching), excess or disjoint genes.



NEAT Drawbacks
• Genome of each organism in the population directly encodes a certain topology 

of the ANN solver. As a result, the population size and the size of encoded ANN 
are limiting factors. With a larger population, we need to have more computing 
resources to evaluate the evolutionary process. Thus, we can only work 
effectively with relatively small ANN topologies and moderate populations.


• Chosen objective function applied to calculate the fitness of organisms in a 
population works well for simple tasks, but often collapses into local minima 
traps for more complex tasks.


• Slow training associated with a large number of calculations at the stage of 
fitness evaluation of each organism in the population.


• First two drawbacks can be addressed using extensions of the NEAT algorithm 
and the latter is the subject of interest in this presentation.



NEAT distributed training with Ray framework 
• Ray is a general-purpose distributed cluster-computing framework developed 

within University of California, Berkley to address the ever-growing need for 
distributed parallel computing for Reinforcement Learning tasks. The main 
goal of the Ray framework was to develop a framework capable of processing 
heterogenous task in a massively distributed manner to handle over a million 
scheduled tasks per second with milliseconds-level latencies. Heterogeneity 
of tasks considered both in the terms of execution time (e.g. a task takes 
milliseconds or hours) and resource usage (e.g. tasks can be executed by 
GPUs, CPUs, or TPUs).


• Our proposal is to use the Ray framework to handle the most time-consuming 
task in the neuroevolution algorithm - simulation of the objective function 
execution to estimate the fitness of each organism in the population at each 
epoch of evolution.



NEAT distributed training with Ray framework 
The following architecture is proposed to support 
distributed training:


• NEAT executor - main process executing 
evolutionary training using NEAT GoLang library.


• Ray Task Scheduler - Ray driver application 
scheduling remote tasks executions and 
exposing RPC API interface to the NEAT 
executor. 


• Distributed workers - cluster with Ray stateless 
workers to perform fitness estimation simulation 
for each organism in the population.



NEAT distributed training with Ray framework 
• The NEAT algorithm implements a direct genome encoding scheme, which 

allows generating a solver ANN directly from an organism’s genome. At the 
same time, the implemented genome encoding scheme has a very compact 
textual representation that can be easily encapsulated in standard POST HTTP 
requests.


• Using this coding scheme, we can easily encode the genomes of a single 
organism or all organisms in a population together. As a result, at the end of 
each evolutionary epoch, we can send the encoded genomes of all organisms 
in the population for evaluation by distributed Ray workers in just one network 
call, which greatly reduces the latency of this operation.


• After receiving the encoded genomes of all organisms in the population, the 
Ray Task Scheduler reads the encoding of each individual genome and 
schedules tasks for remote fitness evaluation by stateless cluster workers.



NEAT distributed training with Ray framework 
• Each remote worker in the Ray cluster receives the encoded genome of the 

organism as input, decodes it into an ANN solver, and applies it to solve the 
simulated objective function. The estimated fitness of the organism and a flag 
indicating whether the objective function has been solved are then returned to 
the Ray Task Scheduler. 

• Ultimately, the Ray Task Scheduler collects data from all remote workers and 
returns it to the NEAT Executor in one batch. Using the obtained fitness 
values of each organism in the population, the NEAT Executor creates a new 
population of organisms for the next epoch of evolution, or terminates 
evolution if a solution has already been found.


• For a detailed description of the proposed algorithms, please refer to my 
conference paper.



Conclusions 
• Despite all the powerful features inherent in evolutionary algorithms, they are still not 

widely used due to their slow training speed. We demonstrate how this obstacle can 
be mitigated by using a state-of-the-art cluster computing framework that allows the 
most time-consuming steps of evolutionary learning to be transferred to an almost 
limitless cloud infrastructure.


• Using the proposed design, it is possible to develop industrial micro-service systems 
with trained NEAT models without any additional model tuning. This can significantly 
reduce the maintenance time of the ML operation cycle. In addition, this approach 
allows implementing self-supervised learning systems that continuously train 
deployed models.


• The source code of the implementation of the NEAT library using the GO 
programming language is available in the GitHub repository 


• https://github.com/yaricom/goNEAT  



Thank you!


