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Abstract. In this paper, we review the key features and major draw-
backs of the Neuroevolution of Augmenting Topologies (NEAT) algo-
rithm, such as slow training speed that limits its area of application.
The main reason for the performance issues of the NEAT algorithm is
the huge number of calculations required at the end of each epoch to
estimate the fitness of each organism in the population. We propose a
software system architecture that can be implemented to solve NEAT
performance problems based on Ray cluster-computing framework. Fi-
nally, we demonstrate how fitness estimation computations can be dis-
tributed across stateless distributed workers deployed either on-premise
or in the cloud using Ray framework.
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1 Introduction

Genetic algorithms are a perspective area of machine learning particularly suit-
able for tasks related to optimization and control [3, 28], reinforcement learning
[20, 24], artificial life simulation [8], coevolution of swarm agents [13], etc. One of
the most popular and powerful among them is a Neuroevolution of Augmenting
Topologies (NEAT) [15, 23]. NEAT algorithm and it’s extensions allow us to
apply creative forces of evolution to evolve compact and energy efficient topolo-
gies of Artificial Neural Networks (ANN). After that, controllers based on such
ANN’s can be used for inference in very resource constrained environments, such
as: robots, UAVs, networking edge devices, IoT devices, etc.

In this paper we start with overview of related work and short definition
of NEAT algorithm fundamentals, then we describe its key features and main
drawbacks, after that we give a short overview of Ray framework [12], and finally
we provide proposal of system architecture that allow us to use Ray cluster-
computing features to distribute fitness evaluation during simulation phase of
evolutionary process controlled by NEAT algorithm.



2 Related work

The slow training speed of evolutionary algorithms, including NEAT, has trou-
bled researches for a while. Multiple solutions has been proposed to solve this
problem.

In [4], the authors proposed using a large network of volunteer computers
to perform large-scale evolution of Convolutional Neural Networks (CNN). To
achieve this task, they implemented modified version of the NEAT algorithm
called Evolutionary Exploration of Augmenting Convolutional Topologies (EX-
ACT). Within two months, about 4500 volunteered computers in the Citizen
Science Grid were able to train about 120000 CNNs. The best performing CNNs
were able to achieve 98.32% test data accuracy on the MNIST dataset. Evolved
CNNs outperformed the CNNs trained using the error gradient backpropagation
optimization strategy. In addition, the evolved CNN networks had an interest-
ing “organic” topology that was very different from the standard architectures
designed by humans.

Distributed computing based on asynchronous master-worker architecture is
a common approach to solving the problem of slow training speed of evolutionary
algorithms. This can be implemented relatively easy. However, it suffers from an
obvious bottleneck. The master process should schedule tasks for workers and
process all results. In [7], a method for improving the performance of the dis-
tributed NEAT algorithm is described. The authors proposed an implementation
of the NEAT that offloads costly crossover and mutation operations to the re-
mote workers. In order to achieve this, they implemented modular congruence
class-based strategy to generate globally unique innovation numbers. The pro-
posed solution does not require any communication between remote workers to
generate innovation numbers, thus reducing communication overhead. Using the
implemented solution, the authors were able to solve bottleneck of the Evolu-
tionary eXploration of Augmenting Memory Models (EXAMM) neuroevolution
algorithm, which prevented scaling to more than 432 cores in the a cluster. They
were able to demonstrate effective scaling over 864 cores using the proposed
method.

Another approach based on implementation of massively parallel genetic op-
timizer for High Performance Computing (HPC) systems were proposed in [26].
The authors designed the Propulate framework based on a fully asynchronous
island model with independent processing workers. The island model allows you
to parallelize the optimization process and distribute the evaluation of the ob-
jective function. According to the proposed model, Processing Elements (PEs),
a.k.a. workers, are divided into islands. Each worker processes one individual at
a time and maintains a population to track evaluated and migrated individuals
on their island. In each iteration, each worker evaluates an individual that is
added to its population list. It then sends the individual with the evaluation
results to all workers on the same island. In return, it gets individuals evaluated
by other workers and adds them to its population list. Explicit synchronization
is avoided by asynchronous point-to-point communication via the Message Pass-
ing Interface (MPI). Each worker dispatches its results as soon as evaluation



is completed and checks incoming message from other workers on the island in
non-blocking manner. In the next iteration, worker breeds a new individual by
applying evolutionary operations of crossover and mutation to the current pop-
ulation list of already evaluated individuals. After mutual update of all workers,
asynchronous migration and pollination between islands occurs. This is done on
per worker basis with some probability. The process is repeated up to certain
number of generations evaluated by each worker. After that, the population is
synchronized among all workers and the best individuals are selected.

In recent works, another promising approach to the implementation of paral-
lel Genetic Algorithms (GA) is proposed - the use of modern Graphics Processing
Units (GPU). By its design, the GPU support massively parallel computations
over multidimensional data vectors (tensors). However, its performance vanishes
when the complexity of GPU programs (kernels) increases. To utilize the in-
herent parallelization capabilities of GPUs, an evolutionary computation library
called EvoTorch was proposed in [27]. The EvoTorch is based on the famous
PyTorch library [17], which itself is a deep learning framework designed from
the ground up to support hardware accelerators such as GPUs. Using PyTorch
as the basis for their library, the authors allow users to utilize an API already
well-known in the industry, which has become the de-facto standard for symbolic
imperative style programming in the field of Machine Learning (ML). Another
big advantage of EvoTorch is that it provides a Python API, which is the most
popular programming language among data scientists and ML researchers. The
library allows for multiple parallelization modes that can be switched with min-
imal user efforts. It can easily parallelize computations using all or any GPUs
available on a local computer or in a computing cluster. In addition, it supports
parallelization on multiple Central Processing Units (CPUs) to address the prob-
lem of parallelizing the computations of the fitness function, which in most cases
is a black-box component that is too complex to be transferred to GPU (e.g.
physics simulation). CPU-bound tasks can be parallelized across multiple CPUs
on a single machine or CPUs available in a compute cluster.

Recently, was published several works aimed to utilize the power of commer-
cial computing clouds to parallelize training of the NEAT algorithm. One of the
promising solutions was proposed by authors of EvoJAX library [25]. The Evo-
JAX library is based on JAX [2] framework which allows seamless integration
with Google Cloud Platform (GCP) [19]. JAX framework allows to compile and
run NumPy [5] programs on GPUs and Tensor Processing Units (TPUs) [6]. In
addition, it allows to use just-in-time compilation of user defined functions into
XLA (Accelerated Linear Algebra) optimized kernels using a one function API.
Being based on JAX the EvoJAX library utilizes its just-in-time compilation to
achieve very high performance of evolutionary process computation. The main
design goal behind EvoJAX library was to improve the neuroevolution training
efficiency by implementing the entire NEAT algorithm pipeline in the modern
ML framework that support such crucial features as: auto-vectorization, device-
parallelism, just-in-time compilation, etc.



Also, distributed evolutionary algorithms used in the modern manufacturing
systems to control and manage production processes. In [1] authors proposed
distributed evolutionary algorithm implementation based on Apache Spark [11]
for flexible scheduling of evaluation tasks in a cloud manufacturing environment.

Reviewed works usually use implementations of GA based on Python pro-
gramming language, which makes it suitable for research and development but
requires additional efforts to be deployed in a production environment based on
micro-service architecture under the control of Kubernetes, for example.

Our proposed solution is based on an implementation of the NEAT algorithm
developed using the GO programming language, which allows the trained models
to be easily deployed in a micro-service-based production environment without
any modifications.

Before proceeding to the description of our solution, we will give a brief
description of the main advantages and disadvantages of the NEAT algorithm.
After that we give a brief description of the Ray framework fundamentals and
go on to describe the design of our solution.

3 NEAT fundamentals

The most important feature of the NEAT algorithm, that defines its potential, is
an ability to evolve the topology of Artificial Neural Networks during the learning
process. The importance of gradual augmentation of network topology became
obvious if we consider how it is implemented by NEAT. When exploring search
space of solution, NEAT algorithm starts with simplest basic network topology
that comprises only input and output nodes of the solver ANN. After that, with
each epoch of evolution, the topology of solvers become more complex and the
most complex multidimensional topologies are evaluated only at the final stages
of evolutionary process. Furthermore, the most suitable topological structures
found during evolution are preserved by NEAT algorithm through generations
due to its inherent features.

Such approach of gradual complexification of solver’s topology considerably
reduces the solution search space during the training. Wide solution’s search
space is a huge drawback of other evolutionary algorithms which effectively ad-
dressed by NEAT due to its key design features, which we consider next.

3.1 Key features of NEAT algorithm

As we already mentioned, the main goal of the NEAT algorithm is to reduce
complexity of evolved network topology during the evolution process. And this
relates not only to the final product of evolution, but for all intermediate gener-
ations of solvers. To achieve this the following key features are implemented in
the algorithm:

Topology augmentation through gradual complexification. Learning
process starts with basic, simple topology and gradually increases its complexity



based on results of analysis of solution search space. At the same time, NEAT
has ability to preserve minimal found topology that is able to generate ultimate
solution.

Speciation. Is another key feature of the NEAT that separates population
into evolutionary niches using genetic distance between organisms (similarity of
genomes). Its main goal is to reduce negative adaptation pressure caused by
increased complexity of novel organism when new node or connection added to
the genome of offspring. New more complex topology can introduce novel vector
for exploration of solution search space leading to success in finding ultimate
solution in the future. However, in the current epoch of evolution it can be erad-
icated by existing evolution champions due to temporal fitness reduction. Thus,
to maintain survival pressure we allow evolutionary competition only among or-
ganisms within the same niche. This allows us to keep interesting innovations
within population even if they are not the most effective within whole popula-
tion.

Mutation. Mutation operator plays important role in keeping genetic diversity
of population during evolution and prevents objective function from stalling at
local minima when the chromosomes of organisms in population become too sim-
ilar. This operator changes one or more genes in chromosomes according to the
mutation probability defined by experimenter. Introducing random changes into
solver’s chromosome, mutation allows evolutionary process to explore new areas
in the search space of possible solutions and to find better solutions during evo-
lutionary process. Mutation operator is a common feature of almost all genetic
algorithms. However, specific to NEAT implementation of the operator changes
not only weights of connections between neurons, but also the very structure of
ANN topology.

Innovation numbers. This is the most prominent feature of the NEAT algo-
rithm that allows to solve issue with overlapping parts of ANN solvers’ genomes.
These parts produce similar topologies that estimate the same function, but were
embedded in different genome structures during reproductive crossover.

Crossover (recombination of genomes). Allows for two or more champion
organisms within population niche to mate and produce offsprings that inher-
ent important characteristics of both parents. It is during this process that the
mentioned above innovation numbers allow us to identify overlapping (match-
ing), excess or disjoint genes. Overlapping genes has the same value of innova-
tion number and encode the same topological structure despite having different
values for another parameters (connection weight, etc.). During reproduction,
matching genes randomly selected from one of the parents to be inherited by
offspring. On the other hand, genes that are present only in genome of one of
the parents can be considered as disjoint (within innovation numbers of another



parent) or excess (outside innovation numbers of another parent). Disjoint or
excess genes inherited by offsprings from most fit parent or from both parents
randomly - this depends on type of crossover operator (multipoint, multipoint
average, single-point, or uniform).

Mentioned features of the NEAT algorithm make it a powerful variant of
evolutionary algorithms. However, it have a drawbacks which we are going to
discuss next.

3.2 Drawbacks of NEAT algorithm

Despite the numerous advantages inherent in the NEAT algorithm, there are
some problems that prevent its widespread application to many machine learning
tasks.

We can name the following major drawbacks of the NEAT:

– In the NEAT algorithm, the genome of each organism in the population
directly encodes a certain topology of the ANN solver. As a result, the pop-
ulation size and the size of encoded ANN are limiting factors because with a
larger population, we need to have more computational resources to evaluate
the evolutionary process. Thus, we can effectively work only with relatively
small ANN topologies and moderately sized populations.

– The chosen objective function applied to calculate the fitness of organisms
in a population works well for simple tasks, but often collapses into local
minima traps for more complex tasks.

– Slow training associated with large number of calculations at the stage of
fitness evaluation of each organism in the population.

The first problem, related to the large population of organisms encoding topolog-
ically complex ANN structures, can be addressed using extensions of the original
NEAT algorithm, where the structure of the ANN solver is encoded as points in
a multidimensional hypercube. The configuration of such structure produced by
much smaller ANN named Compositional Pattern Producing Network (CPPN)
[21] that learns how to encode large ANN of solver within hypercube. There
are at least two extensions of NEAT based on hypercube encoding: HyperNEAT
and ES-HyperNEAT [15, 18, 22]. With the help of these extensions, it is even
possible to solve tasks related to visual pattern recognition, where deep machine
learning methods traditionally shine.

The second problem can be addressed by replacing the goal-oriented objective
function with another search optimization method, such as Novelty Search [9,
10]. In this method, a specific goal-oriented objective function is not defined or
applied during search for solution. Instead, the novelty of each found solution
is directly rewarded during the process of evolution. Thus, the novelty of found
solutions directs the evolution towards the ultimate goal. Such approach gives
us a chance to use creative forces of evolution regardless of adaptive pressure to
expand the solution’s search space.



Finally, the last problem can be solved by applying parallel distributed com-
puting to evaluate the fitness of each organism in the population. Next, we are
going to consider how this can be implemented using Ray framework for dis-
tributed computing [12].

4 Ray framework fundamentals

Ray is a general-purpose distributed cluster-computing framework developed
within University of California, Berkley to meet the ever-growing need for dis-
tributed parallel computing for Reinforcement Learning tasks. The main goal
behind Ray framework was to develop framework which is able to handle het-
erogenous task in massively distributed manner to reach more than million sched-
uled tasks per second with milliseconds-level latencies [12]. The heterogeneity of
tasks considered both in the terms of execution time (e.g. a task takes millisec-
onds or hours) and resource usage (e.g. tasks can be executed by GPUs, CPUs,
or TPUs).

There are two main abstractions defined in Ray framework to support mas-
sive parallel computing:

– Task - is to enable stateless distributed computing, suitable for efficient and
dynamically load balanced tasks related to simulation (RL rollouts, fitness
evaluation of genomes, etc), large inputs processing (e.g. processing videos,
images), and allows for easy recovery after failures.

– Actor - is to allow stateful distributed computations, such as training an
ML model, running stateful simulations, etc.

From programming point of view a task represents the execution of remote
function on a stateless worker. The outputs of remote functions are determined
exclusively by their inputs, that is, the call to such a function is idempotent.
The stateless workers suitable for fine-grained load balancing and efficient fail-
ure handling because they can be started and stopped without worrying about
loosing any computational state.

On the other hand, an actor represents a remote object that exposes multiple
methods that can be executed sequentially while maintaining computational
state between invocations. It is handled by stateful workers, which are coarse-
grained load balanced, introduce extra overhead from checkpointing, but allow
to perform many small updates without extra overhead.

The call to schedule task or actor for remote execution by Ray framework
returns immediately with a future representing result of execution. This gives
us the flexibility to build parallel data flows in our applications and introduce
different synchronization schemes to achieve our goals.

The core of the Ray framework is implemented using C++ programming
language, and at the time of this writing, it provides several APIs:

– Python API - the main API to interact with Ray framework, supporting
all kinds of operations defined in the framework.



– Java API - is an experimental API to interact with Ray framework, sup-
porting only subset of functions.

– REST API - to monitor and manage remote jobs, serve deployments, etc.

Such flexibility of the provided APIs allows us to use Ray framework in
various contexts and on different platforms. In addition, it’s worth noting that
Ray provides seamless integration with most popular cloud platforms, such as:
AWS, GCP, and Azure. This allows us to deploy our clusters on a virtually
unlimited number of computing nodes in the cloud.

Now that we’ve covered the basics of the Ray framework, we’re ready to look
at how it can be used to accelerate NEAT training.

5 Distributed training of NEAT algorithm with Ray
framework

As we mentioned, simulation to estimate fitness of each organism in the popu-
lation is the most time-consuming part of training using NEAT. Especially in
tasks that require a large population size and a complex fitness assessment en-
vironment. Unfortunately, most real-world tasks fall into this category, which
greatly hinders the widespread adoption of NEAT algorithm.

Fig. 1. Overall system architecture



In order to support distributed training using NEAT algorithm we propose
architecture shown in the figure 1. Where:

– NEAT executor - main process executing evolutionary training using NEAT.

– Ray Task Scheduler - Ray driver application scheduling remote tasks
executions and exposing RPC API interface for NEAT executor.

– Distributed workers - cluster with Ray stateless workers to perform fitness
estimation simulation for each organism in the population.

The NEAT algorithm implements a direct genome encoding scheme, which
allows generating a solver ANN directly from organism’s genome [14, 15, 23].
At the same time, the implemented genome encoding scheme has a very com-
pact textual representation that can be easily encapsulated into standard POST
HTTP requests.

An example of the NEAT compact genome coding scheme as following:

genomestart 1

trait 1 0.1 0 0 0 0 0 0 0

trait 2 0.2 0 0 0 0 0 0 0

trait 3 0.3 0 0 0 0 0 0 0

node 1 0 1 3 NullActivation

node 2 0 1 1 NullActivation

node 3 0 1 1 NullActivation

node 4 0 0 2 SigmoidSteepenedActivation

gene 1 1 4 0.0 false 1 0 true

gene 2 2 4 0.0 false 2 0 true

gene 3 3 4 0.0 false 3 0 true

genomeend 1

Using this encoding scheme, we can easily encode the genomes of one organ-
ism or all organisms in a population together. As a result, at the end of each
evolutionary epoch, we can send the encoded genomes of all organisms in the
population for evaluation by distributed Ray workers in just one network call,
which greatly reduces the latency of this operation.

An algorithm describing NEAT training using remote distributed workers for
fitness estimation is shown in the Listing 1.

Upon receiving the encoded genomes of all organisms in the population, the
Ray Task Scheduler reads the encoding of each individual genome and schedules
tasks for remote fitness evaluation by stateless cluster workers. In the Listing 2,
we provide the definition of an algorithm for distributed fitness estimation.

Each remote worker in the Ray cluster receives the encoded genome of the
organism as input, decodes it into an ANN solver, and applies it to solve the
simulated objective function. The estimated fitness of the organism and a flag
indicating if the objective function was solved are then returned to the Ray Task
Scheduler. An algorithm describing evaluation of fitness of organism’s genome
by remote worker is shown in the Listing 3.



Algorithm 1: NEAT training with distributed fitness estimation

Input: A number of Epochs of evolution to execute.
Result: List of found successfull solvers or empty list.
begin

1. Initialize randomized Population of simplest organisms;
foreach epoch ∈ Epochs do

// Encode Population genomes

encoded←− EncodePopulationGenome(Population) ;
// Send encoded Population genomes for distributed evaluation

results←− EvaluatePopulationFitnessRemote(encoded) ;
foreach organism ∈ Population do

organism.F itness←−
results.GetOrganismFitness(organism.ID) ;

if results.HasBeenSolved() then
return results.SuccessfullSolversList()

else
2. Run NEAT algorithm over evaluated Population to produce
new Population for the next epoch of evolution

Algorithm 2: Distributed fitness evaluation of each organism in the
population

Input: A Population of organisms at the epoch end.
Result: Results with fitness values of each organism in the population.

FutureResults←− List() ;
foreach genome ∈ Population do

// Schedule genome fitness evaluation by ray cluster

future←− GenomeFitnessRemote(genome) ;
// Add future with result to the list

FutureResults←− FutureResults ∪ future ;

// Wait for futures to be completed by remote workers of Ray

cluster

Results←− Ray.get(FutureResults) ;

Algorithm 3: Fitness evaluation of organism’s genome by remote
worker
Input: A Genome of organism to be evaluated.
Result: Fitness value of organism after evaluation.
Result: Solved flag to indicate if objective was solved by provided organism.

solverAnn←− CreateANN(Genome) ;
// Run simulation environment against ANN created

// from genome of particular Organism
Fitness, Solved←− RolloutEnvironmentSimulation(solverAnn) ;



Ultimately, Ray Task Scheduler collects data from all remote workers and
return it back to the NEAT executor in one batch. Using the received fitness
values of each organism in the population, the NEAT executor creates a new
population of organisms for the next epoch of evolution, or terminates evolution
if solution has already been found.

6 Conclusions

Despite all the powerful features inherent in evolutionary algorithms, they are
still not widely used due to slow training speed. We demonstrate how this ob-
stacle can be avoided by using modern cluster-computing framework that allows
us to move the most time-consuming step of evolutionary training to an almost
limitless cloud infrastructure. This article presents the general architecture of
such system based on Ray framework, which was specifically designed to han-
dle scheduling of millions of tasks per second. Next, we are going to implement
proposed architecture using an implementation of the NEAT algorithm written
in the GO language [16].

Using proposed design, it will be possible to develop industrial micro-service
systems with trained NEAT models without any additional model tuning. This
will significantly reduce the maintenance time of ML operations cycle. In addi-
tion, such approach allows implementation of self supervised learning systems
that continuously train the deployed models.
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